What is NFC and how can we make Payments through NFC?? Explained!!

What is NFC and how can we make Payments through NFC?? Explained!!

These days NFC is becoming pretty commonplace thanks to the growth of online payment systems like Samsung Pay and Android Pay, especially when it comes to high-end devices and even many mid-rangers. You may have likely heard the term before, but what is NFC exactly? In this piece we rundown what it is, how it works, and what it can be used for.


Near Field Communication or NFC:

NFC stands for “Near Field Communication” and, as the name implies, it enables short range communication between compatible devices. This requires at least one transmitting device, and another to receive the signal. A range of devices can use the NFC standard and can be considered either passive or active, depending on how the device works.


Passive NFC Devices and Active NFC Devices:

Passive NFC Devices:

Passive NFC devices include tags, and other small transmitters, that can send information to other NFC devices without the need for a power source of their own. However, they don’t really process any information sent from other sources, and can’t connect to other passive components.  These often take the form of interactive signs on walls or advertisements.

Active NFC Devices:

Active devices are able to both send and receive data, and can communicate with each other as well as with passive devices. Smartphones are by far the most common implementation of active NFC devices, but public transport card readers and touch payment terminals are also good examples of the technology.


What Technology does NFC uses?

NFC works on the principle of sending information over radio waves.  Near Field Communication is another standard for wireless data transitions, meaning that there are specifications which devices have to adhere to in order to communicate with each other properly. The technology used in NFC is based on older RFID (Radio-frequency identification) ideas, which uses electromagnetic induction in order to transmit information.


Data Transmission Frequency Speed in NFC:

The transmission frequency for data across NFC is 13.56 megahertz, and data can be sent at either 106, 212 or 424 kilobits per second, which is quick enough for a range of data transfers – from contact details to swapping pictures and music.



Modes of Operation in NFC:

In order to determine what sort of information is to be exchanged between devices, the NFC standard currently has three distinct modes of operation for compliant devices.

Peer-to-Peer Mode:

The most common use in smartphones is the peer-to-peer mode, which allows two NFC-enabled devices to exchange various pieces of information between each other. In this mode both devices switch between active, when sending data, and passive states when receiving.

Read/Write Mode:

Read/write mode, on the other hand, is a one way data transmission, where the active device, possibly your smartphone, links up with another device in order to read information from it. This is the mode used when you interact with an NFC advert tag.


Emulation Mode:

The final mode of operation is card emulation, whereby the NFC device can be used like a smart or contactless credit card in order to make payments or tap into public transport systems.


NFC vs Bluetooth:

You might think that NFC is bit unnecessary, considering that Bluetooth has been more widely available for many years. However, there are several important technological differences between the two that gives NFC some significant benefits in certain circumstances. The major argument in favor of NFC is that it has much lower power consumption than Bluetooth. This makes NFC perfect for passive devices, such as the advertising tags that we mentioned earlier, as they can operate without the need for a major power source.

However, this power saving does have some major drawbacks. Most noticeably that the range of transmission is much shorter than Bluetooth. While NFC has a range of around 10cm, just a few inches, Bluetooth connections can transmit data up to 10 meters or more from the source. Another drawback is that NFC is quite a bit slower than Bluetooth, transmitting data at a maximum speed of just 424 kbit/s, compared with 2.1 Mbit/s with Bluetooth 2.1 or around 1 Mbit/s with Bluetooth Low Energy.


NFC Advantages:

But NFC does have one advantage when it comes to speed, faster connectivity. Due to the use of inductive coupling, and the absence of manual pairing, it takes less than one tenth of a second to establish a connection between two devices. While modern Bluetooth connects pretty fast, NFC is still super handy for certain scenarios. Namely mobile payments.


Payments through NFC:

Samsung Pay, Android Pay, and even Apple Pay for iOS all utilize NFC technology — though Samsung Pay works a bit differently than the others. While Bluetooth works better for connecting devices together for file transfers, sharing connections to speakers, and more, we anticipate that NFC will always have a place in this world thanks to mobile payments — a technology that is quickly on the rise.

Share this post: